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Abstract. A proof is given, on the basis of a theorem due to Girding, for a lower bound 
on the degree (1+2) of the minimal equation of matrices p’ in first-order unique-mass 
relativistic wave equations. It is not necessary, for the applicability of the theorem, that 
a hermitising operator should exist or that the equation be irreducible; and the generalisa- 
tion of the bound to multimass equations is also straightforward. The bound is not, in 
general, linked to the physical spin or spins s allowed by the wave equation or the maximum 
spin j, contained in the wavefunction. However, in the physically important case of 
irreducible equations which admit a hermitising operator, the bound becomes ( I  + 2) 3 

(2j,+ l ) ,  which is stronger than the bound (2s + 1) suggested in the recent literature. 

1. Introduction 

It is well known (Harish-Chandra 1947) that if the first-order relativistic wave equation 

(ip” 8, - m) = 0 (1) 
is to describe particles of unique mass m, the minimal equation of the matrix Po must 
have the form 

(p0yt2 = ( P O ) ’ .  (2) 
More generally, the p” must be such that 

(3) (p”1pW2-g”1”2)p”3.. . p@l+2=0  
0 

where the sum is over all permutations B of the indices P I ,  p2,. . . , ~ 1 + 2 .  

Also well known is the work of Umezawa and Visconti (1956) (see also Umezawa 
1956 and Takahashi 1969) wherein it was concluded that 1 =2s-1 (s being the 
physical spin of the particle described by the wave equation). This conclusion was 
based on arguments which seemed to lead to coincident upper and lower bounds on 
1, namely 1 s 2s - 1 and 12 2s - 1. It had been tacitly assumed by these authors that 
the physical spin s was also the maximum spin jm appearing in the transformation 
property of 4. Glass (1971a) noted that in the more general situation where jm>s, 
their argument would have given 1 s 2jm - 1 (instead of 2s - l), but even this modified 
bound would not be valid in general, there being a lacuna in the original proof thereof. 
In fact the physical spin has little to do with any upper bound on 1, as has been noted 
by Mathews et a1 (1980). It is the number, multiplicities and connectivities of the 
Lorentz irreducible representations (IR) occurring in the transformation property of 
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the wavefunction which go into the determination of 1. From a knowledge of these, 
one readily obtains an absolute upper bound on 1 in terms of the size of the largest 
of the spin blocks into which P o  can be decomposed; if the size of the spin-j block 
is Lj, then 

1 s max(Lj - 2 6,) (4) 

in any unique-mass unique-spin theory without degeneracy. A better bound (which 
has already been used in the context of the Singh-Hagen (1974) integer spin equations 
in Mathews et a1 (1980)) is 

1 s max(rj + 1 - 2 6,) ( 5 )  

where ri is the rankt of the spin-j block. Even this might be improved upon under 
particular conditions or in particular cases: in half-integer spin theories with parity 
invariance, for instance, 1 cannot exceed max(rj + 1 - 2 ais). 

While the position regarding the upper bound on 1 has thus been clarified consider- 
ably, the same cannot be said of the question as to what factors determine how small 
1 may be. It was suggested by Chandrasekharan et a1 (1972) that in theories where 
s <jm, the uv bounds should be interpreted as (2s - 1) s 1 s (2jm- 1). As already 
noted, the upper bound is not generally valid, and it has been pointed out by Mathews 
et a1 (1980) that the above lower bound too is not valid in general. In a recent paper 
Cox (1981) has argued that in theories in which a hermitising operator 7 is defined 
and a Klein-Gordon divisor exists as a polynomial in P . a  with the p” forming a set 
irreducible under the proper Lorentz group, the lower bound I > (2s - 1) should 
remain. The argument is rather heuristic and rests on the need for having at least a 
minimum number of Lorentz IR to form an unbroken chain connecting any IR 
containing the physical spin to its conjugate. The bound is indeed honoured under 
the assumed conditions, but no analysis of the precise roles of various conditions in 
the determination of a bound has however been made in that paper or elsewhere in 
the literature. Our aim in this paper is to pinpoint the factors which determine the 
lower bound in Lorentz invariant theories (whether or not they admit any 7 and 
whether or not the p” form an irreducible set). It will be seen that the physical spin 
s does not enter into the proof of the bound we establish. In general, the absolute 
lower bound on 1 is given by (2k-1), where k is the maximum rank ‘of symmetric 
tensors which can be constructed from the matrix four-vector p ” ;  and the value of k 
in turn can be inferred from a result due to Glass (1971b), based on a fundamental 
theorem of GArding (1944). This theorem and its implications for the present problem 
will be dealt with in 0 3, while in 0 2 we point out a flaw in the Umezawa-Visconti 
(1956) proof of the lower bound, namely their premise regarding the transformation 
property of the Klein-Gordon divisor$ d (a). This premise needs correction, though 
it affects the final result in regard to the lower bound on I only in theories wherein 
a parity operator cannot be defined or the representation of the P-matrices is reducible 
or both. A brief discussion of the results is given in D 4. 
t This bound is a straightforward consequence of the fact, evident from mere visual inspection of the spin-j 
block, that certain elements of the block are zero. This same fact could be represented by a graph (wherein 
an edge connecting a pair of vertices ( k ,  I )  is drawn if and only if the (k,  I )  element of the spin block is 
non-zero). The use of graph theory to obtain bounds on the rank has been advocated by Cox (1978, 1981). 
$ A suggestion that this premise may be suspect appears in the work of Loide and Loide (1977), where it 
is also shown that I < 2s - 1 in certain classes of theories. 
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2. Considerations on the lower bound on 1 

In the work leading to their bounds on 1, Umezawa and Visconti observed that 
associated with a unique-mass equation of the form (l), there must exist a ‘Klein- 
Gordon divisor’ d (a) defined by 

(6) d(a)(ip” a,, - m )  = (ip” a, - m)d(a) = -(a,, a” + m2).  

From this defining equation it followed that 

d(a )=m+ ip .a+  c [(i/3.a)p+(i/3*a)p-2a2]m-p+” 
p z 2  

or 
- p + l  ,,I II. d(a) = m +ip” a,, + iPm d ”’ a,, . . . a,+ 

p a 2  

where 

d”l”’c”p = ( p ” I P ” Z - g ” 1 ” 2 ) p ” 3 . .  . p b  @a> 

= (dp1...%-1 P ) S .  ( 8 6 )  

9 

The subscript S in the last expression denotes that the product within the brackets is 
to be symmetrised in all the indices. It was required that the number of terms in the 
sum in (7) be finite in order that d(a) be a local operator. This meant that if the 
highest value of p involved in the sum in ( 7 )  were denoted by ( I  + l) ,  one would have 

0 (9) dF1”.!-“’+2 = 

and hence also d wl”‘clp - - 0 for all p > (I + 2). Equation (9) is just the condition (3). 
The uv argument for the lower bound (2s-1) on 1 then went as follows. The 

commutator/anticommutator of t,bL ( x )  and t ,bp(x’) is given by dap (a)  acting on a scalar 
function of ( x  - x ’ ) ,  and hence dap(a) transforms like t+k x t,bp. Since & ( x )  describes 
the field with maximum spin s, the representation of dap(a) can then be decomposed 
into the sum of representations of spin 2s, 2s - 1, . . . , 0, according to the Clebesh- 
Gordan theorem. This means in turn that d(d) should contain matrix tensors of rank 
up to 2s, i.e. d”1.””2s # 0. Therefore dW1.~ . ”~  can vanish only for p > 2 s  and hence 
(1+2)>2s or 13(2s-1). 

The lower bound so deduced is however not honoured by all unique-mass relativis- 
tic equations (Mathews et a1 1980), as already noted. The Hurley equation, involving 
a wavefunction transforming according to (s, 0) 0 (s -;, 1) is a case in point. So also 
is the ‘doubled’ Hurley equation in which the wavefunction has additional parts 
transforming as (0, s) 0 (f, s -f). While a hermitising operator q, defined to be such 
that 

qp”77-1 = @ f i t ,  (10) 

does not exist in the simple Hurley equation, the doubled equation does admit an q 
and can be derived from a Lagrangiant. In both cases, the degree of P o  is 3 (i.e. 

t This equation is obviously reducible under the proper Lorentz group. One could add further Lorentz I R  

and produce an irreducible equation, but in this process the minimal degree would of course be increased. 
The discussion by Cox (1981) excludes reducible equations. 
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I = 1) irrespective of the spin s, and the Klein-Gordon divisor is 

d(a)  = ( ip .a+m)+( l /m)[a2+( iP  -a)’]. (1 1) 

The violation of the uv bound in the former case could be attributed to the absence 
of 7 (Cox 1981), noting that the use of the commutation rules in the uv proof 
presupposes the existence of 7. But such an explanation would be misleading insofar 
as it tends to create the impression-which will be seen below to be unjustified-that 
77 has an essential role in the determination of bounds. Further, in the case of the 
‘doubled’ Hurley equation which does possess 7, one would still have to identify 
precisely what aspect of the uv proof is rendered invalid by the reducible nature of 
the equation. 

It is readily apparent that the crucial element which plays a direct role in placing 
a lower bound on 1 is the transformation property of d(8).  A little reflection shows 
however that in presuming that d(a) transforms like t,h x JI (Umezawa 1956, Umezawa 
and Visconti 1956), there has been an oversight. Given any set of finite-dimensional 
matrices p” transforming as a four-vector and acting on a vector space which carries 
the representation S(A) of the Lorentz group, i.e. given that 

s ( A ) - ’ ~ ” s ( A )  = ~ , p ” ,  (12) 

the Lorentz IR involved in the transformation properties of all possible polynomial 
functions of the p” are all contained in S x S, in view of a theorem of GBrding (1944) 
which will be stated in the next section. Whether or not the direct sum of these IR 
is equivalent to S x S will depend upon whether the set of p-matrices is irreducible 
or not; but in any case, only a subset of these IR is involved in the transformation 
property of d(a ) .  This fact ought to have been obvious, although, surprisingly, it had 
not been noted hitherto. The point is that only the matrices d”” which are symmetric 
tensors constructed from the p” occur in d(8).  These transform of course according 
to self-conjugate IR of the type (r,  r )  of the proper Lorentz group (or direct sums of 
such IR). Therefore any irreducible representations (m, n )  with m # n which are 
present in S x S do not find a place in the transformation of d(a ) .  

The implications of this fact for the question under consideration are strikingly 
brought out by the example of the simple Hurley equation based on the representation 

S(A) - (s, 0)  O (S - $, $). 

We have 
2s zs-1  

S(N o S(N - 1 ( j ,  0 )  o [ ( j ,  1) o ( j ,  O)I o ? ( j  -3, $1. (13) 

This representation of course contains spins up to 2s through the IR (2s, O),  (2s - 1, 1) 
and (2s -i, 4). But the spin value 2s is not contained in any of the self-conjugate IR 
occurring in SxS, which are just (O,O), (f, $) and (1, 1); only these are involved in 
the transformation of d(a )  and they contain only spins up to 2. The remainder of the 
uv argument then requires only that the degree (1 + 2) of the minimal equation be 
a 3  instead of (2s + 1); there is no longer any conflict with the actual value of the 
minimal degree, which is 3. 

The point raised above is not the only one to be considered in dealing with the 
general case. A full discussion will be possible on the basis of a fundamental theorem 
due to GArding which will now be stated. 

j = O  /=0 j = 1  
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3. GBrding’s theorem and its consequences 

Girding (1944) proved a theorem concerning the existence of sets of matrices T, 
which transform as irreducible tensors under the action of a group in the following 
sense: 

where S1(A) and S2(A)  are representation matrices belonging to two finite-dimensional 
representations of the group and D(A) is an irreducible representation (see also 
Wightman 1978, Glass 1971b). The theorem may be stated as follows, in the context 
of the Lorentz group. 

Theorem 1 .  (Giirding) The irreducible representations D‘” corresponding to which 
(non-vanishing) matrix tensor sets Th“ can be defined are such that their direct sum 
is equivalent to S1 @ S2.  

This theorem has been applied by Glass (1971b) to an analysis of the tensor basis 
of the algebra d ( p )  generated by the matrices p” which form a four-vector with 
respect to the Lorentz group 9 and are defined over a vector space which carries the 
representation S(A) of 9. The algebra d ( p )  is constituted by products p” lp”z .  . . p”“ 
(for all n )  and all finite linear combinations of such products. By a process of 
symmetrisation/antisymmetrisation over subsets of indices in products of the above 
type, followed by removal of traces, various matrix sets Bh“ transforming as irreducible 
tensors can be formed: 

The algebra is spanned by such tensor sets. The basic question is as to which IR D‘” 
occur in the transformation properties of these irreducible tensors. The answer to 
this question has been given by Glass (1971b) as follows. 

Theorem 2. (a) If the algebra d ( p )  is irreducible, there exists a basis of d ( p )  consisting 
of irreducible tensor sets; the tensor sets exist in one-to-one correspondence with the 
IR of 9 whose direct sum is equivalent to S(A) 0 S(A) .  (b) If the matrices constituting 
the algebra d ( p )  form a reducible set, acting irreducibly on and leaving invariant q 
vector spaces of the representations Sl(A), &(A), . . . , Sq(A)  of 9, then irreducible 
tensor sets of matrices exist which together span&(@), and they can be placed in 
one-to-one correspondence with the IR of 9 whose direct sum is equivalent to 
(SI 0 S1) 0 (S2 0 S2) 0. . .0 (S, 0 Sq).  

The implications of the above theorems for the question under consideration are 
readily apparent. Considering all the self-conjugate IR (r, r )  contained in S 0 S or 
X Si 0 Si according as the algebra &(p)  is irreducible or reducible, let k be the highest 
value of r which occurs. Then the algebra contains a non-vanishing tensor of rank 
2k, totally symmetric in the p-matrices. This means that dfi1“+2k cannot vanish. None 
of the d f i 1 . . ’ ” p  for any p < 2 k  can vanish either: if one did, all higher ones would vanish 
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too since d”l...”p+l is a symmetrised product of d”’.“”P and p ” p + l .  Therefore the lowest 
value possible for 1 + 2 in equation (9) is (2k + 1); we thus have the following theorem?. 

Theorem 3. If the highest-ranking self-conjugate IR contained in the decomposition 
of S 0 S (if d ( p )  is irreducible) or 2 Si 0 Si (if d ( p )  is fully reducible) is (k, k), the 
degree ( I  + 2) of the minimal equation of P o  cannot be less than (2k + l), or 

I >(2k - 1). (16) 

The value of k itself can easily be found from a knowledge of the IR contained in 
S (or each of the Si, in the case of reducible a@)). Let ~ = ( m ,  n )  and ~ ” ( m ’ ,  n ’ )  
be any two of the IR contained in one and the same Si. The highest-ranking self- 
conjugate IR contained in the direct product of the above two IR-this direct product 
being itself contained in Si x Si-is (r, r )  with r = min(m + m‘, n + n ’ ) .  Let rmax be the 
highest of the values of r arising when all such direct products for all the Si are 
considered. Then 

k = rmax. (17) 

The reason why the degree of the minimal equation in the case of the ‘doubled’ 
Hurley equation can be just 3 for any s, despite the existence of a hermitising operator 
r ] ,  can now be seen. It is just that the matrices p” in this case from a reducible set, 
the Lorentz representations associated with the reduced parts being SI - (s, 0 )  0 
(s -;, $), and Sz, the conjugate of S1. Both S1 0 S1 and Sz 0 Sz contain only (0, 0), 
(i, 4) and (1, 1) as self-conjugate IR. Hence k = 1, leading to the lower bound 3 on 
( I  +2)-which is honoured, unlike the uv lower bound (2s + 1) which we have seen 
to be not really applicable. It is worth emphasising that d(d )  in this case does not 
transform like $ x $ even under the rotation group, which would be hard to understand 
on the basis of the uv arguments. 

Reducible equations are undoubtedly not of great interest, and even among 
irreducible equations, it is those equations which admit a hermitising operator r ]  which 
are of the greatest physical interest. What can one say about the value of k for this 
class of equations? The answer is that when both irreducibility of d ( p )  and existence 
of r ]  are demanded, k is equal to the maximum spin present in S, namely jm, and 
consequently 

1s2 jm-1 .  (18) 

To see this, we observe first that in any theory admitting r], along with any IR, say 
(m, n ) ,  present in S,  its conjugate (n ,  m )  must also be present. Consider now a 
representation, say (mo, no), which contains the highest spin jm. Among the self- 
conjugate IR contained in S x S there will be some arising from the direct product of 
(mo, no) with its conjugate (no, mo), of which that of the highest rank is evidently 
(mo+ no, mo + no),  i.e. (im, jm). No IR ( r ,  r )  with r > j m  can arise from the direct product 
of any other pair of IR (m, n ) ,  (m’, n’) .  For, the highest r that one can get from the 
product of (m,  n )  and (m’,  n’) is min(m +m’, n + n ’ ) ,  and if this is to exceed (mo+no) 
w e w o u l d h a v e t o h a v e m + m ’ > m o + n o ,  n ’ + n > m o + n o a n d h e n c e m + n + m ’ + n ’ >  

t In the case of multimass equations, one has PA H i  (pfP$ - 1) = 0 instead of (2) where the pa are mass 
ratios. Consequently (1+2)  is to be replaced by ( I + 2 N )  in the statement of the theorem, N being the 
number of distinct masses. 
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2(mo + no). But this is not possible since, by the definition of (mo, no), there is no IR 

in S for which m + n > mo + no. This concludes the proof that k = jm and hence that 
equation (18) is valid under the conditions stated. 

4. Discussion 

The main points brought out in the foregoing considerations on the lower bound on 
1 are: (a) that any analysis of the transformation property of d(8) must be done in 
terms of Lorentz IR (rather than in terms of IR of the rotation subgroup as had been 
done hitherto), and that explicit account must be taken of the fact that d(8) contains 
only tensors which are totally symmetric; (b) that the question of reducibility of d(@) 
is crucial for the determination of the irreducible tensors involved, given S(A); and 
(c) that the condition of existence of q is by itself of no direct relevance to the 
problem, there being a uniform method to determine the minimal degree of P o  
irrespective of whether q exists or not. However, this condition, taken together with 
the irreducibility of d ( p ) ,  requires that 13 2jm - 1, a result is proved here for the first 
time. The conjectured bound 13 2s - 1 for which a predilection is shown in earlier 
works (Chandrasekharan et al 1972, Cox 1981) is weaker than the proven bound in 
which jm (and not s) figures. The conjecture seems to have been prompted by the 
idea that the algebra of the &matrices ‘must provide at least the physical degrees of 
freedom in the theory, which simply amount to 2s + 1’ (Cox 1981). The fact that in 
theories such as that of the doubled Hurley equation with q, wherein (2s + 1) degrees 
of freedom exist for arbitrary s despite the minimal degree being just 3, should be 
enough to discount the idea. However, the alternative argument of Cox, in terms of 
the minimum number of linked IR which must exist for given s in an irreducible theory 
with q, is plausible. 

The matrices @” in barnacled theories (Hurley and Sudarshan 1975, Khalil 1978) 
form a reducible but indecomposable set, of a special type. The tensor content of 
indecomposable algebras d(@) is not completely defined, unlike in the irreducible 
and fully reducible cases, as it is possible only to say that the IR according to which 
the tensors transform constitute a proper subset of the set of IR contained in S @ S  
(Glass 1971b). The question of fixing a lower bound on I in such theories requires 
further consideration. 

A remark about the uv upper bound may not be out of place here, especially in 
view of an apparent misconception about the reason for its breakdown. Cox (1981), 
for instance, has claimed that it is not true in general that d(8) is a polynomial in 
(ip 8 )  and inferred that it is because the uv proof takes d(8) to be a polynomial that 
it fails to be generally valid. Actually this is not the case: the polynomial form (7) of 
d(8) is completely general. Cox’s claim seems to be based on a misunderstanding of 
the following point made by Glass. Under the circumstance that the maximum spin 
present in d(8) is 2s, Umezawa and Visconti had argued that the series in (7) should 
terminate with p = 2s (as d f i l , ” ’ ” p  with p > 2s would involve spin > 2s). Glass pointed 
out that d”””. is a reducible tensor, and hence that even for p > 2s it need not vanish 
in toto in order to be free of spin > 2s ; only its reduced parts involving spins > 2s need 
vanish. In particular, d”’.+s+’ need not vanish though its traceless part d”1...”2s+1 
must vanish. The vanishing of d by itself (without d as a whole vanishing) does not 
lead to an equation of the form ( 2 )  or (3) since d involves contracted pairs of 
@-matrices. In such a case it is only some higher-rank d” ’ ” ’ ”~  (q  > 2s + 1) which would 
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vanish as a whole, thus making 1 + 2 > 2s + 1. Though in such a case the vanishing of 
d would permit the re-expression of the terms with p > 2s in ( 7 a )  in a form in which 
p appears also otherwise than in the combination (p  * a), it does not alter the fact 
that it is only an alternative form for the polynomial expression (7a) .  The reducibility 
to a non-polynomial form is a consequence rather than the cause of the breakdown 
of the uv bound. The reason for the breakdown of the upper bound in theories 
involving repeated appearance of Lorentz IR is to be found in the fact that with 
increase in multiplicity, the number of tensors of the type ( r ,  r )  present in S 0 S also 
increases, and these cannot all be constructed from products of up to 2s factors of 
p” only. This necessitates the existence of non-vanishing tensors of higher rank than 
2s and, correspondingly, a higher degree for the minimal equation. 
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Note added in Proof: W Cox (1982 J. Phys. A:  Math. Gen. 15 223) has considered a number of irreducible, 
parity-invariant spin-2 theories. Our theorem, which requires that 1 s 2 j m  - 1 for these, enables the bounds 
set by Cox on I ( 9  in his notation) to be tightened to 1 = 5, 5 < 1 <7 and 1 = 5 respectively for the theories 
of $0 4, 5, and 6 of his paper. 
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